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Chapter 0

Preliminaries

This document describes the use of the statistical package R as computing
support in an introductory statistics course based on the text Probability and
Statistics for Engineering and the Sciences (7th edition) by Jay Devore (Thom-
son Brooks-Cole, 2008). We demonstrate how R can be used to reproduce the
results in many of the examples in the text.

One of the desirable features of this text is the number of examples and
exercises based on real data sets the Prof. Devore has culled from the engineering
literature. As they are real data, some of the data sets are large and have
a complex structure. Although it is not di�cult to enter these data into a
computer package like R, the process is tedious and error-prone. Furthermore,
it is not much of a learning experience.

We have provided copies of the data sets for the examples and the exercises
in a �package�, named Devore7, that can be used with R. This document is also
part of the Devore7 package. 1

You may wish to try some of the examples in this section as you are reading
it. We assume that you have both R and the Devore7 package for R installed.
(See Appendix A for instructions if you need to do this �rst.)

Calculating a median

Suppose that we wish to reproduce the calculation of the median of the data on
transferrin receptor concentration shown in Example 1.13 (p. 27 of the text).
As there are only 12 concentrations, we could enter the data by hand. Start R
and type

> conc = c(7.6, 8.3, 9.3, 9.4, 9.4, 9.7, 10.4, 11.5, 11.9, 15.2, 16.2, 20.4)

> str(conc)

num [1:12] 7.6 8.3 9.3 9.4 9.4 9.7 10.4 11.5 11.9 15.2 ...

1For the Devore7 package, some of the data sets were not provided by the publisher. Many,
but not all, missing ones were ported from the Devore6 package.
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8 CHAPTER 0. PRELIMINARIES

> median(conc)

[1] 10.05

The �rst line assigns the 12 data values as a numeric vector to the name
conc, a short form of �concentration�. The function named "c" concatenates a
series of data values into a vector that can be assigned a name.

In the next line the "str" function is used to examine the structure of the
object named "conc". The output shows that this is a numeric vector of length
12 and displays the �rst several data values so you can check them against the
data in the text.

Finally the "median" function, applied to the conc vector returns the me-
dian.

Using the Devore7 package

Entering the data, as shown above, is suitable for small data sets. An alternative
and preferred way to access the data for the larger data sets, is to use the
Devore7 package and load the data set. The data set for Example 1.13 is
called xmp01.13. In general, data sets for examples in the text are named
xmpcc.nn, where cc is the two-digit chapter number and nn is the two-digit
example number. Data sets for exercises are named excc.nn. (Single digit
chapter or example numbers have a 0 prepended as in xmp01.13 so that the
names sort in the correct order.)

You must attach the Devore7 package every time you start R if you are to
have access to the data sets from the textbook like this.

To attach the package to an R session use

> library(Devore7)

after starting R or select Packages -> Load package -> Devore7 from the
menu bar. (If this produces an error see Appendix A for instructions on in-
stalling the Devore7 package.)

After attaching the package, you can load a data set with

> data(xmp01.13)

> str(xmp01.13)

'data.frame': 12 obs. of 1 variable:

$ concentration: num 15.2 9.3 7.6 11.9 10.4 9.7 20.4 9.4 11.5 16.2 ...

The �rst line loads the data set into the current R session. The second line
provides a description of the structure of the data set. It is a good practice
always to use str on the data set after loading it.
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Form of the data sets

The data set xmp01.13 is not a single vector like conc. It is a data table (called
a �data frame� in R) with one column and 12 rows. All the data sets in the
Devore7 package are data frames.

The output from str indicates that the name of the �rst column is concentration.
To calculate the median we must give both the name of the data frame and the
name of the column. We can do this in three ways, as described in Appendix A.9.
We will focus on just one of these ways, which is to use the "with" function.

> with(xmp01.13, median(concentration))

[1] 10.05

The with function indicates which data set should be used to gain access to
the column (or �variable�) called concentration.

Summary

To recap:

1. You should have R installed on a computer and the Devore7 package for
R installed. (See Appendix A for instructions if you need to do this.)

2. At the beginning of each session use

> library(Devore7)

to allow access to the data sets from the package.

3. To load the data for a speci�c example or a speci�c exercise use a name
of the form xmpcc.nn or excc.nn to data() then check the structure with
str().

> data(xmp01.13)

> str(xmp01.13)

In the remainder of this document we will not show these steps explicitly.
The R functions we have mentioned are shown in Table 1. See also Ap-

pendix A.11.
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Function Purpose

q() quit R
help(name) display help on an object (function or data set)
help.search(�topic�) search for functions related to a topic
library(name) Make data sets from a package available for loading
data(name) Load a data set
str(name) Display a brief description of the structure
with(dataset,. . . ) Use the variables in a data set

Table 1: R functions for general use



Chapter 1

Overview and Descriptive

Statistics

We will follow the same sequence of topics and chapter headings as in the text
and will begin each chapter with a table of R functions that are used in the
chapter.

Table 1.1 lists functions used in chapter 1.

Function Description

stem(x) stem-and-leaf display
hist(x) histogram
boxplot(x) boxplot
mean(x) mean (i.e. average) value of x
median(x) median
var(x) sample variance
sd(x) sample standard deviation
log(x) natural logarithm (works on entire vectors)
log(x, 10) common (base 10) logarithm
sqrt(x) square root
x^(1/3) cube root

Table 1.1: R functions used with chapter 1

1.1 Example 1.1

Example 1.1 (p. 4) lists the ambient temperatures (◦F) for each test �ring or
actual launch of the space shuttle prior to the Challenger tradgedy in 1986.
In Figure 1.1 (p. 4) these data are displayed as a stem-and-leaf plot and as a
histogram. There are 36 data values.

11



12 CHAPTER 1. OVERVIEW AND DESCRIPTIVE STATISTICS

A stem-and-leaf plot similar to that in Figure 1.1 (p. 4) can be produced
with

> with(xmp01.01, stem(temp))

The decimal point is 1 digit(s) to the right of the |

3 | 1

4 | 059

5 | 23788

6 | 01136777789

7 | 000023556689

8 | 0134

(Remember that �rst you must attach the Devore7 package, load the xmp01.01
data set and check its structure. We do not show those steps here.)

The hist function produces a histogram.

> with(xmp01.01, hist(temp))

Histogram of temp

temp
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The stem-and-leaf plot and the histogram shown here are not exactly the
same as those shown in Figure 1.1 (p. 4). In section 1.12 we show how optional
arguments to stem and to hist could be used to produce displays similar to
those in the text.

1.2 Example 1.5

The data in example 1.5 (p. 11), on the percentage of undergraduate students
who are binge drinkers at 140 di�erent campuses, are presented as a stem-and-
leaf display in Figure 1.4 (p. 12).

> with(xmp01.05, stem(bingePct))
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The decimal point is 1 digit(s) to the right of the |

0 | 4

0 |

1 | 134

1 | 5678889

2 | 12234

2 | 56666777889999

3 | 0112233344

3 | 555666677777888899999

4 | 11122222334444

4 | 5566666677788888999

5 | 001112222334

5 | 55666667777888899

6 | 011112444

6 | 55666778

> with(xmp01.05, stem(bingePct, scale = 0.5))

The decimal point is 1 digit(s) to the right of the |

0 | 4

1 | 1345678889

2 | 1223456666777889999

3 | 0112233344555666677777888899999

4 | 111222223344445566666677788888999

5 | 00111222233455666667777888899

6 | 01111244455666778

The �rst stem-and-leaf display is more spread out than the one in Figure 1.4
(p. 12). In the second call to stem we use the optional argument scale to shrink
the scale by a factor of 1

2 so the resulting display is similar to that in Figure 1.4.

1.3 Example 1.6

As in Example 1.5 a stem-and-leaf display is created, this time from data on
yardages of golf courses as given in Golf Magazine.

> with(xmp01.06, stem(yardage))

The decimal point is 2 digit(s) to the right of the |

64 | 3467

65 | 1338

66 | 119

67 | 015779
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68 | 05779

69 | 0034

70 | 112455

71 | 113777

72 | 18

1.4 Example 1.9

A histogram such as shown in Figure 1.8 (p. 16) is produced by the hist func-
tion.

> with(xmp01.09, hist(consump))

Histogram of consump

consump
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The vertical axis on this histogram is frequency. For a vertical axis on the scale
of density (relative frequency divided by bin width) use the optional argument
freq = FALSE.

1.5 Example 1.10

Figure 1.10 (p. 28) shows an example of a histogram with unequal bin widths.
The optional argument breaks to the hist function is used to set the break-
points for the bins. When unequal bin widths are used, the vertical axis switches
to the density scale.

> with(xmp01.10, hist(strength, breaks = c(2,4,6,8,12,20,30)))
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Histogram of strength
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The breaks argument is a vector created by concatenating several numbers with
the c function.

1.6 Examples 1.12 and 1.13

Numeric measures of location are calculated with the functions mean and median.
Another useful summary function is sum. A brief summary, including the mean,
the median, the quartiles, the maximum and minimum is returned by summary.

> with(xmp01.12, mean(crackLength))

[1] 21.18095

> with(xmp01.12, sum(crackLength))

[1] 444.8

> with(xmp01.13, median(concentration))

[1] 10.05

> with(xmp01.12, summary(crackLength))

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.90 14.00 21.20 21.18 25.80 45.00

> with(xmp01.13, summary(concentration))

Min. 1st Qu. Median Mean 3rd Qu. Max.

7.600 9.375 10.050 11.608 12.725 20.400
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1.7 Example 1.14

The trimmed mean, described in Example 1.14 (p. 28) is obtained by using the
optional trim argument to mean.

> with(xmp01.14, summary(copper))

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.000 2.700 3.300 3.667 3.875 10.100

> with(xmp01.14, mean(copper, trim = 0.1))

[1] 3.41

1.8 Example 1.15

Functions var and sd provide the sample variance and sample standard devia-
tion, respectively. The �computing formula� described on p. 34 is not used by
these functions because that formula can have poor numerical properties.

> with(xmp01.15, var(Strength))

[1] 1.19358

> with(xmp01.15, sd(Strength))

[1] 1.092511

1.9 Examples 1.17

Function boxplot provides the boxplot. By default a vertical boxplot is con-
structed. Use the optional argument horizontal=TRUE to get a horizontal box-
plot

> with(xmp01.17, boxplot(depth, horizontal = TRUE))

40 60 80 100 120
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1.10 Example 1.18

> with(xmp01.18, boxplot(C1, horizontal = TRUE))

20 40 60 80 100

1.11 Comparative boxplots

The data for Example 1.19 (p. 38) are not available so we use the data on
scores for creamy and crunchy peanut butters (exercise 1.15, p. 21) to illustrate
comparative boxplots. This data set has two columns and 37 rows. The score
is the �rst column and the indicator of �Creamy� or �Crunchy� is the second
column. We say that these data are in the stacked format (see Appendix A.10
for details). In the call to boxplot we use the formula to indicate that Score
is the response and Type de�nes the groups for the comparative boxplot.

> with(ex01.15, boxplot(Score ~ Type, horizontal = TRUE, las = 1))

 Creamy

 Crunchy

20 30 40 50 60 70 80

Score

Ty
pe

1.12 Enhancing graphical displays

In this chapter we have used several functions, such as hist, barplot, plot,
and boxplot that produce graphical displays of data. These functions all can
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take optional arguments that provide more e�ective displays. For example, in
� 1.11, we used the optional argument las=1 to boxplot to change the label
style on the vertical axis so the labels are horizontal rather than vertical.

The las=1 argument can be used with other graphics functions. Compare

> with(xmp01.09, hist(consump, las = 1))

Histogram of consump

consump
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with the display in � 1.4
We have also seen how the breaks argument can be used with hist and

how the scale argument can be used with stem. To reproduce a display like
Figure 1.1 (p. 4) we would use

> with(xmp01.01, stem(temp, scale=2))

The decimal point is 1 digit(s) to the right of the |

3 | 1

3 |

4 | 0

4 | 59

5 | 23

5 | 788

6 | 0113

6 | 6777789

7 | 000023

7 | 556689

8 | 0134

and
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> with(xmp01.01, hist(temp, breaks=c(25,35,45,55,65,75,85)))

Histogram of temp

temp
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Chapter 2

Probability

Table 2.1 lists a function used in chapter 2.

Function Description

choose(n,k) calculate
(
n
k

)
Table 2.1: R functions used in chapter 2

2.1 Example 2.23

In this chapter on probability there is little use for R functions except for the
choose function that evaluates the number of combinations of k objects selected
from n, written

(
n
k

)
and described in section 2.3 (pp. 64�65). To calculate the

�rst probability in example 2.23

> choose(15,3)*choose(10,3)/choose(25,6)

[1] 0.3083004

21
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Chapter 3

Discrete Random Variables

and Probability Distributions

To quote the document �Introduction to R�

One convenient use of R is to provide a comprehensive set of sta-
tistical tables. Functions are provided to evaluate the cumulative
distribution function P(X <= x), the probability density function
and the quantile function (given q, the smallest x such that P(X <=
x) > q), and to simulate from the distribution.

Distribution R name additional arguments

binomial `binom' `size, prob'
geometric `geom' `prob'
hypergeometric `hyper' `m, n, k'
negative binomial `nbinom' `size, prob'
Poisson `pois' `lambda'

Pre�x the name given here by `d' for the density, `p' for the CDF, `q'
for the quantile function and `r' for simulation (random deviates).
The �rst argument is `x' for `dXXX', `q' for `pXXX', `p' for `qXXX'
and `n' for `rXXX' (except for `rhyper' and `rwilcox', for which it is
`nn').

These functions are more versatile and more accurate than using probability
tables.

3.1 Example 3.31

For X having a binomial distribution with n = 6 and p = 0.5 we are to calculate
P (X = 3), P (3 ≤ X), and P (X ≤ 1).

23
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> dbinom(3, size = 6, prob = 0.5)

[1] 0.3125

> dbinom(3:6, size = 6, prob = 0.5)

[1] 0.312500 0.234375 0.093750 0.015625

> sum(dbinom(3:6, size = 6, prob = 0.5))

[1] 0.65625

> 1 - pbinom(2, size = 6, prob = 0.5)

[1] 0.65625

> pbinom(2, size = 6, prob = 0.5, lower = FALSE)

[1] 0.65625

> pbinom(1, 6, 0.5)

[1] 0.109375

The �rst call evaluates b(3; 6, .5). The second call evaluates the probability
function at 3, . . . , 6 using the ":" operator that generates the sequence from 3
to 6. If we sum this vector of probabilities we get P (3 ≤ X). An alternative is
to use P (3 ≤ X) = 1−P (X ≤ 2) and evaluate P (X ≤ 2) with pbinom. Another
alternative is to use cumulative probability in the upper tail, obtained with the
optional argument lower=FALSE to pbinom. Finally pbinom is used to calculate
P (X ≤ 1).

3.2 Example 3.32

> pbinom(8,15,0.2)

[1] 0.999215

> dbinom(8,15,0.2)

[1] 0.003454764

> 1-pbinom(7,15,0.2)

[1] 0.00423975

> sum(dbinom(4:7,15,0.2))

[1] 0.3475981
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3.3 Example 3.35

R uses a di�erent, but equivalent, set of parameters for the hypergeometric
distribution than does the text. In the text the parameters of the hypergeometric
are N , the population size, n, the sample size, and M , the number of �successes�
in the population. In R the sample size is called k, the parameterm corresponds
to M in the text, and n is N −M .

Thus what is written in the text as h(2; 5, 12, 20) becomes

> dhyper(2,12,8,5)

[1] 0.2383901

3.4 Example 3.36

> dhyper(2,5,20,10)

[1] 0.3853755

> phyper(2,5,20,10)

[1] 0.6988142

3.5 Example 3.38

The negative binomial density function, dnbinom, shown in the text as nb(10; 5, 2),
has essentially the same calling sequence in R. The cumulative probability func-
tion is pnbinom.

> dnbinom(10, 5, 0.2)

[1] 0.0343941

> pnbinom(10, 5, 0.2)

[1] 0.1642337

3.6 Example 3.39

> dpois(5, lambda = 4.5)

[1] 0.1708269

> ppois(5, 4.5)

[1] 0.7029304
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3.7 Example 3.40

The Poisson distribution can be used to approximate binomial probabilities
with large n and small p. However, there is no need to do so because the exact
binomial probabilities can be evaluated.

> dbinom(1, 400, 0.005)

[1] 0.2706694

> dpois(1,2)

[1] 0.2706706

> pbinom(3, 400, 0.005)

[1] 0.8575767

> ppois(3, 2)

[1] 0.8571235



Chapter 4

Continuous Random

Variables and Probability

Distributions

The set of continous distributions available in R is

Distribution R name additional arguments

beta `beta' `shape1, shape2, ncp'
Cauchy `cauchy' `location, scale'
χ2 `chisq' `df, ncp'
exponential `exp' `rate'
F `f' `df1, df1, ncp'
gamma `gamma' `shape, scale'
log-normal `lnorm' `meanlog, sdlog'
logistic `logis' `location, scale'
normal `norm' `mean, sd'
Student's t `t' `df, ncp'
uniform `unif' `min, max'
Weibull `weibull' `shape, scale'
Wilcoxon `wilcox' `m, n'

As with the discrete distributions, pre�x the name given here by `d' for the
density, `p' for the CDF, `q' for the quantile function and `r' for simulation
(random deviates). The �rst argument is `x' for `dXXX', `q' for `pXXX', `p' for
`qXXX' and `n' for `rXXX'

Not all the distributions shown above are discussed in the text.

4.1 Example 4.13

Function pnorm provides the standard normal cumulative distribution function
by default. The optional arguments mean and sd can be set to values other than

27
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0 and 1 to provide probabilities from any normal distribution.
P (Z ≤ 1.25) and P (Z ≤ −1.25) are evaluated as

> pnorm(1.25)

[1] 0.8943502

> pnorm(-1.25)

[1] 0.1056498

P (Z > 1.25) can be evaluated in two ways

> 1-pnorm(1.25)

[1] 0.1056498

> pnorm(1.25, lower=FALSE)

[1] 0.1056498

To evaluate probabilities of intervals, such as P (−0.38 ≤ Z ≤ 1.25), apply pnorm
to the endpoints as a vector (created with the "c" function) which returns a
vector of probabilities. The "diff" function forms successive di�erences from
which we obtain the probability in the interval.

> pnorm(c(-0.38,1.25))

[1] 0.3519727 0.8943502

> diff(pnorm(c(-0.38,1.25)))

[1] 0.5423775

4.2 Example 4.14

The inverse of the standard normal CDF, called the quantile function, is ob-
tained with qnorm. Notice that the �rst argument to qnorm is a probability, not
a percentage.

> qnorm(0.99)

[1] 2.326348

4.3 Example 4.15

To obtain zα, use the optional argument lower=FALSE to qnorm.

> qnorm(0.05, lower=FALSE)

[1] 1.644854
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4.4 Example 4.16

Nonstandard normal distribution probabilities or quantiles are obtained with
the optional arguments mean and sd to pnorm and qnorm. In this example
µ = 1.25 and σ = 0.46 and we wish to evaluate P (1.00 ≤ X ≤ 1.75)

> diff(pnorm(c(1.0, 1.75), mean = 1.25, sd = 0.46))

[1] 0.5680717

4.5 Example 4.18

For µ = 64 and σ = 0.78, the 99.5th percentile is

> qnorm(0.995, mean=64, sd=0.78)

[1] 66.00915

4.6 Example 4.20

The normal approximation to binomial probabilities can be calculated but, like
the Poisson approximation, it is not necessary as the exact binomial probabilities
can also be calculated.

> pnorm(10.5, mean = 12.5, sd = sqrt(12.5*0.75))

[1] 0.2568146

> pbinom(10, size = 50, prob = 0.25)

[1] 0.2622023

> diff(pnorm(c(4.5,15.5), mean = 12.5, sd = sqrt(12.5*0.75)))

[1] 0.8319162

> diff(pbinom(c(4,15), size = 50, prob = 0.25))

[1] 0.8348084

4.7 Example 4.23

The parameters α and β of the gamma distribution are named shape and scale

respectively in R. In this example α = 2 and β has the default value of 1.

> pgamma(c(3,5), shape=2)

[1] 0.8008517 0.9595723
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> diff(pgamma(c(3,5), shape=2))

[1] 0.1587206

> pgamma(4, shape = 2, lower = FALSE)

[1] 0.09157819

4.8 Example 4.24

> diff(pgamma(c(60,120), shape = 8, scale = 15))

[1] 0.4959056

> pgamma(30, shape = 8, scale = 15, lower = FALSE)

[1] 0.9989033

4.9 Examples 4.21 and 4.22

In R the parameter λ of the exponential distribution is called rate

> pexp(10, rate = 0.2)

[1] 0.8646647

> diff(pexp(c(5,10), rate = 0.2))

[1] 0.2325442

> pexp(2, rate = 0.5, lower = FALSE)

[1] 0.3678794

4.10 Example 4.25

The parameters α and β of the Weibull distribution are called shape and scale.

> pweibull(10, shape = 2, scale = 10)

[1] 0.6321206

> qweibull(0.95, shape = 2, scale = 10)

[1] 17.30818
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4.11 Example 4.27

The lognormal distribution takes two parameters named meanlog and sdlog.

> diff(plnorm(c(1,2), meanlog = 0.375, sdlog = 0.25))

[1] 0.8316108

> qlnorm(0.99, meanlog = 0.375, sdlog = 0.25)

[1] 2.602798

4.12 Example 4.28

R provides probabilities and quantiles of the standard beta distribution with
A = 0 and B = 1. The parameters α and β are called shape1 and shape2

respectively. To use other values of A and B the scaling must be done manually.
In this example A = 2, B = 5, α = 2 and β = 3. To transform to a standard
beta distribution we replace x by (x− 2)/(5− 2)

> pbeta((3-2)/(5-2), shape1 = 2, shape2 = 3)

[1] 0.4074074

4.13 Examples 4.29 and 4.30

The normal probability plot is produced with qqnorm. A reference line can be
added with qqline.

> with(xmp04.29, qqnorm(meas.err))

> with(xmp04.29, qqline(meas.err))
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> with(xmp04.30, qqnorm(Voltage))

> with(xmp04.30, qqline(Voltage))
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4.14 Example 4.31

The Weibull probability plot is not available directly in R. However, the plot
can be created using the formula ln[− ln(1− p)] for the 5th, 15th, . . . , and 95th
percentiles as given in text. The sequence 0.05, 0.15, . . . , 0.95 is generated with
seq(0.05, 0.95, 0.1).

> with(xmp04.31, plot(log(-log(1-seq(0.05, 0.95, 0.1))), log(lifetime)))
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Chapter 5

Joint Probability

Distributions and Random

Samples

The main use of R in this chapter is for simulation experiments as described in
section 5.3.

5.1 Example 5.22

In this example six samples of size ten are drawn from a Weibull distribution
with α = 2 and β = 5. To reproduce the plot of the density shown in Figure
5.6 we can use

> curve(dweibull(x, shape = 2, scale = 5), 0, 15, las = 1)
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To get a single sample of size 10 from this Weibull distribution we use

> rweibull(10, shape = 2, scale = 5)

[1] 5.6361 4.1799 5.9832 8.6358 3.1928 4.8484 4.9638 1.2786 6.0260 3.5913

We could store such a sample as, say, samp, then evaluate its sample mean,
sample median, and sample standard deviation.

> samp = rweibull(10, shape = 2, scale = 5)

> print(samp)

[1] 4.1605 2.8186 5.4700 3.7850 5.3467 4.3100 2.9269 4.6136 1.8320 2.9722

> mean(samp)

[1] 3.8236

> median(samp)

[1] 3.9728

> sd(samp)

[1] 1.1791
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Notice that every time rweibull is called a new sample is generated.
This process of generating a sample and evaluating selected statistics on the

sample could be repeated manually to get a total of 6 samples. For large simula-
tion experiments this would quickly become tedious so we put these calculations
in a loop.

> means = medians = sds = numeric(6)

> for (i in 1:6) {

+ samp = rweibull(10, shape = 2, scale = 5)

+ print(samp)

+ means[i] = mean(samp)

+ medians[i] = median(samp)

+ sds[i] = sd(samp)

+ }

[1] 2.5361 1.0461 8.5495 4.8063 2.6420 2.9407 5.6912 2.7060 2.7958 2.8600

[1] 2.2086 5.5548 8.8848 1.6366 6.8904 1.4670 5.5849 7.0585 1.6860 4.8098

[1] 1.9022 1.6983 7.4523 3.0961 2.5058 3.0237 5.1522 6.4349 4.6574 2.6598

[1] 2.2273 3.6321 4.9526 7.7869 3.4993 2.3149 2.7976 3.5075 2.7458 3.4125

[1] 1.1429 5.7734 6.2382 3.8456 4.7623 7.1040 7.9564 3.5233 1.5496 5.7019

[1] 3.4942 8.0792 9.9336 6.7365 4.4112 2.3263 6.6617 11.5016

[9] 2.5797 4.1933

> means

[1] 3.6574 4.5781 3.8583 3.6876 4.7598 5.9917

> medians

[1] 2.8279 5.1823 3.0599 3.4559 5.2321 5.5364

> sds

[1] 2.1420 2.6745 1.9693 1.6414 2.2501 3.1324

In the �rst line we assign the names means, medians, and sds to numeric vectors
of length 6. Within the loop we assign individual elements in these vectors.

5.2 Normal data, like example 5.23

In this example 500 samples of size n = 5 are generated from a normal distribu-
tion with µ = 8.25 and σ = 0.75 and the mean of each sample is calculated. We
could do this in a loop, as shown above. However, it is more compact to generate
a matrix with 5 rows and 500 columns then generate a histogram of the means
of the columns of this matrix. Function colMeans calculates the means of the
columns. Function matrix creates a matrix from a numeric vector. The user
can specify the number of rows and the number of columns. If one of these is
omitted, it is calculated from the length of the vector and the other dimension.
We set the graphics parameter "mfrow" (multiple �gures by row) to create a 2
by 2 array of plots.
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> par(mfrow = c(2,2))

> samp5 = matrix(rnorm(500 * 5, mean = 8.25, sd = 0.75), ncol = 500)

> hist(colMeans(samp5), main='Samples of size 5')

> samp10 = matrix(rnorm(500 * 10, mean = 8.25, sd = 0.75), ncol = 500)

> hist(colMeans(samp10), main='Samples of size 10')

> samp20 = matrix(rnorm(500 * 20, mean = 8.25, sd = 0.75), ncol = 500)

> hist(colMeans(samp20), main='Samples of size 20')

> samp30 = matrix(rnorm(500 * 30, mean = 8.25, sd = 0.75), ncol = 500)

> hist(colMeans(samp30), main='Samples of size 30')
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5.3 Example 5.23

This example is similar to Example 5.22. To reproduce Figure 5.12 use

> curve(dlnorm(x, meanlog=3, sdlog=0.4), from = 0, to = 75, las = 1)
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The samples and the histograms of the means are generated from

> par(mfrow=c(2,2))

> samp5=matrix(rlnorm(500 * 5, 2, 0.4), ncol = 500)

> hist(colMeans(samp5), main = 'Means of samples of size 5')

> samp10=matrix(rlnorm(500 * 10, 2, 0.4), ncol = 500)

> hist(colMeans(samp10), main = 'Means of samples of size 10')

> samp20=matrix(rlnorm(500 * 20, 2, 0.4), ncol = 500)

> hist(colMeans(samp20), main = 'Means of samples of size 20')

> samp30=matrix(rlnorm(500 * 30, 2, 0.4), ncol = 500)

> hist(colMeans(samp30), main = 'Means of samples of size 30')
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Finally the normal probability plot is generated by

> qqnorm(colMeans(samp30))

> qqline(colMeans(samp30))
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Chapter 6

Point Estimation

6.1 Example 6.2

The various estimators of location described in Example 6.2 (p. 229) can be
evaluated as

> with(xmp06.02, mean(Voltage))

[1] 27.793

> with(xmp06.02, median(Voltage))

[1] 27.96

> with(xmp06.02, mean(range(Voltage)))

[1] 27.67

> with(xmp06.02, mean(Voltage, trim=0.1))

[1] 27.83812

6.2 Example 6.3

Functions var and sd provide s2 and s, the sample variance and standard de-
viation, respectively.

> with(xmp06.03, var(Strength))

[1] 0.25125

> with(xmp06.03, sd(Strength))

[1] 0.5012484
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To evaluate the alternative estimator σ̂ =
∑
(Xi−X̄)

n we must evaluate the for-
mula

> with(xmp06.03, sum((Strength-mean(Strength))^2)/length(Strength))

[1] 0.2198438

Function length applied to a vector returns n, the number of elements in the
vector.

6.3 Example 6.13

The calculation of the method of moments estimates in Example 6.13 (p. 244)
can be split into stages

> xbar = with(xmp06.13, mean(Survival))

> xsqb = with(xmp06.13, mean(Survival^2))

> xbar

[1] 113.45

> xsqb

[1] 14087.75

> xbar^2/(xsqb-xbar^2)

[1] 10.57725

> (xsqb-xbar^2)/xbar

[1] 10.72585

These estimates are slightly di�erent from those shown in the text because the
intermediate results x̄ and

∑
x2
i /n were rounded in the text.

Maximum likelihood estimates are discussed later in chapter 6. We can eval-
uate the maximum likelihood estimates of α and β for this example using the
function fitdistr from the package MASS that supplements the book �Modern
Applied Statistics with S (4th ed)� by Bill Venables and Brian Ripley (Springer,
2002). These estimates are determined by numerical optimization of the loga-
rithm of the likelihood function and we must supply starting estimates. We use
the method of moments estimates for this.

> library(MASS)

> with(xmp06.13, fitdistr(Survival, dgamma, list(shape=10.577,scale=10.726)))

shape scale

8.802043 12.888909

( 2.731807) ( 4.116382)

The MLEs are quite di�erent from the method of moments estimates. The
numbers in parentheses under the estimates are their standard errors.



Chapter 7

Statistical Intervals Based on

a Single Sample

Table 7.1 lists functions used in chapters 7 and 8.

Function Description

t.test(x) Student's t test and con�dence interval
prop.test(x,n) Test and con�dence interval on proportion
binom.test(x,n) Test and con�dence interval on proportion

Table 7.1: R functions used with chapters 7 and 8

7.1 Example 7.2

The calculation of the con�dence interval for known σ, shown in Example 7.2,
could be done in R as

> 80.0 + c(-1, 1) * 1.96 * 2.0 / sqrt(31)

[1] 79.29595 80.70405

but it is probably just as easy to use a hand calculator for this.

7.2 Example 7.6

The calculation of the sample mean, the sample standard deviation, and the
sample size can be combined into a single statement

> with(xmp07.06, mean(Voltage)+c(-1,1)*1.96*sd(Voltage)/sqrt(length(Voltage)))

[1] 53.22857 56.18810
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An alternative, and preferred way, of calculating the interval is to use t.test.
With 48 observations the con�dence interval on µ from the t distribution is
nearly identical to that from the standard normal distribution.

> with(xmp07.06, t.test(Voltage))

One Sample t-test

data: Voltage

t = 72.463, df = 47, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

53.18950 56.22716

sample estimates:

mean of x

54.70833

It is always a good idea to check the normal probability plot when using
t.test, even with a large sample.

> with(xmp07.06, qqnorm(Voltage))
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7.3 Example 7.8

R has two functions, binom.test and prop.test, that can be used to calculate
a large-sample con�dence interval on the binomial proportion, p. Neither of
them corresponds exactly the the con�dence interval described on p. 295.
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> prop.test(16,48)

1-sample proportions test with continuity correction

data: 16 out of 48, null probability 0.5

X-squared = 4.6875, df = 1, p-value = 0.03038

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.2080794 0.4851357

sample estimates:

p

0.3333333

> binom.test(16,48)

Exact binomial test

data: 16 and 48

number of successes = 16, number of trials = 48, p-value = 0.0293

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.2039597 0.4841083

sample estimates:

probability of success

0.3333333

7.4 Example 7.11

> with(xmp07.11, t.test(Elasticity))

One Sample t-test

data: Elasticity

t = 28.278, df = 15, p-value = 1.989e-14

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

13437.11 15627.89

sample estimates:

mean of x

14532.5

> with(xmp07.11, qqnorm(Elasticity))
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7.5 Example 7.15

Although there is no built-in con�dence interval for σ2 in R, the qchisq func-
tion can be used to obtain the critical values χ2

α/2,n−1 and χ2
1−α/2,n−1 used to

calculate the interval.

> with(xmp07.15,qqnorm(voltage))

> with(xmp07.15, 16*var(voltage)/qchisq(c(0.975,0.025), df = 16))

[1] 76171.31 318079.76
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Chapter 8

Tests of Hypotheses Based on

a Single Sample

The functions described in chapter 7 are used for performing tests of hypotheses
based on a single sample. Optional arguments are used to specify µ0 or p0 and
to indicate the form of the alternative hypothesis. All of these tests return a
p-value, described in �8.4 (pp. 311�317). From the p-value the result of the
hypothesis test for any level α can be determined.

8.1 Example 8.8

In R the t.test function can be used with any size of data set. For large n the
t test is essentially equivalent to the large-sample z test.

> with(xmp08.08, t.test(DCP, mu = 30, alt = "less"))

One Sample t-test

data: DCP

t = -0.72816, df = 51, p-value = 0.2349

alternative hypothesis: true mean is less than 30

95 percent confidence interval:

-Inf 31.61088

sample estimates:

mean of x

28.76154

As the p-value of 0.2349 exceeds 0.05 we do not reject H0 : µ = 30 versus
Ha : µ < 30 at level α = 0.05.

Although not shown in the text book, it is of interest to examine the normal
probability plot for these data
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> with(xmp08.08, qqnorm(DCP))
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This plot shows considerable skewness in the data. If we transform to the
logarithm of the DCP measurement the skewness is diminished.

> with(xmp08.08, qqnorm(log(DCP)))
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and in the logarithm scale, the hypothesis test H0 : µlog = log(30) versus Ha :
µlog < log(30) is signi�cant at level α = 0.05.

> with(xmp08.08, t.test(log(DCP), mu=log(30), alt="less"))

One Sample t-test

data: log(DCP)

t = -2.223, df = 51, p-value = 0.01534

alternative hypothesis: true mean is less than 3.401197

95 percent confidence interval:

-Inf 3.370103

sample estimates:

mean of x

3.274999

8.2 Example 8.9

> with(xmp08.09, t.test(MAWL, mu = 25, alt = "greater"))

One Sample t-test

data: MAWL

t = 1.0382, df = 4, p-value = 0.1789

alternative hypothesis: true mean is greater than 25
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95 percent confidence interval:

22.32433 Inf

sample estimates:

mean of x

27.54

8.3 Example 8.10

> power.t.test(n=10,delta=0.1,sd=0.1,type="one.sample",alt="one.sided")

One-sample t test power calculation

n = 10

delta = 0.1

sd = 0.1

sig.level = 0.05

power = 0.897517

alternative = one.sided

> power.t.test(delta=0.1,sd=0.1,power=0.95,type="one.sample",alt="one.sided")

One-sample t test power calculation

n = 12.32052

delta = 0.1

sd = 0.1

sig.level = 0.05

power = 0.95

alternative = one.sided

8.4 Example 8.11

The large-sample test for a population proportion is most closely related to the
result of the prop.test function

> prop.test(1276, 4115, p = 0.3, alt = "greater")

1-sample proportions test with continuity correction

data: 1276 out of 4115, null probability 0.3

X-squared = 1.9453, df = 1, p-value = 0.08155

alternative hypothesis: true p is greater than 0.3

95 percent confidence interval:

0.298233 1.000000

sample estimates:

p

0.3100851
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The value labeled X-squared is the square of the z statistic. This version of
the test uses a continuity correction. If you wish to reproduce the test statistic
as given in the text book, add the optional argument correct=FALSE

> prop.test(1276, 4115, p = 0.3, alt = "greater", correct=FALSE)

1-sample proportions test without continuity correction

data: 1276 out of 4115, null probability 0.3

X-squared = 1.993, df = 1, p-value = 0.07901

alternative hypothesis: true p is greater than 0.3

95 percent confidence interval:

0.2983532 1.0000000

sample estimates:

p

0.3100851

> sqrt(1.993)

[1] 1.411737

In both cases the p-value is less than 0.1 so we reject H0 : p = 0.3 versus
Ha : p > 0.3 at level α = 0.1.

8.5 Example 8.13

The small sample test is provided by binom.test

> binom.test(x=14,n=20,p=0.9,alt="less")

Exact binomial test

data: 14 and 20

number of successes = 14, number of trials = 20, p-value = 0.01125

alternative hypothesis: true probability of success is less than 0.9

95 percent confidence interval:

0.0000000 0.8604463

sample estimates:

probability of success

0.7
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Chapter 9

Inference Based on Two

Samples

> print(bwplot(type ~ strength, xmp09.07, xlab = "Tensile strength (psi)"))

> print(qqmath(~ strength|type, xmp09.07,

+ xlab = "Standard normal quantiles",

+ ylab = "Tensile strength (psi)",

+ type = c("g","p"), aspect = 1))

9.1 Example 9.7

When given vectors of numbers as arguments, the summary function returns
the mean, min, max and quartiles of the given vector. The qqnorm function is
used to generate a qqplot of its given argument. The simplest use of the boxplot
function creates a boxplot for each vector argument passed to it.

> str(xmp09.07)

'data.frame': 18 obs. of 2 variables:

$ strength: int 2748 2700 2655 2822 2511 3149 3257 3213 3220 2753 ...

$ type : Factor w/ 2 levels "fused","nofusion": 2 2 2 2 2 2 2 2 2 2 ...

> bwplot(type ~ strength, xmp09.07)
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Tensile strength (psi)

fused

nofusion

2600 2800 3000 3200

> qqmath(~strength|type, xmp09.07)

Standard normal quantiles
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> t.test(strength ~ type, xmp09.07, alt = "greater")

Welch Two Sample t-test

data: strength by type

t = 1.8018, df = 15.944, p-value = 0.04526

alternative hypothesis: true difference in means between group fused and group nofusion is greater than 0

95 percent confidence interval:

6.332257 Inf

sample estimates:

mean in group fused mean in group nofusion

3108.125 2902.800

> print(qqmath( ~ I(bottom-surface), xmp09.08, type = c("g","p"),

+ xlab = "Standard normal quantiles", aspect = 1,

+ ylab = "Difference in zinc concentrations (mg/L)"))

9.2 Example 9.8

The t.test function conducts various types of t tests. When given one vector
argument, it performs a one sample test, when two vector arguments are given,
and the paired option is speci�ed as TRUE, the function can perform a paired
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two sample tests as well. Options can also present to specify if a test is one or
two sided.

> str(xmp09.08)

'data.frame': 6 obs. of 2 variables:

$ bottom : num 0.43 0.266 0.567 0.531 0.707 0.716

$ surface: num 0.415 0.238 0.39 0.41 0.605 0.609

> qqmath( ~ I(bottom-surface), xmp09.08)

Standard normal quantiles
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> with(xmp09.08, t.test(bottom,surface,paired=TRUE))

Paired t-test

data: bottom and surface

t = 3.6998, df = 5, p-value = 0.014

alternative hypothesis: true mean difference is not equal to 0

95 percent confidence interval:

0.02797823 0.15535510

sample estimates:

mean difference

0.09166667

> print(qqmath( ~ Difference, xmp09.09, type = c("g","p"),

+ xlab = "Standard normal quantiles", aspect = 1,

+ ylab = "Difference in proportion of time (%)"))

9.3 Example 9.9

> str(xmp09.09)
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'data.frame': 16 obs. of 4 variables:

$ Subject : int 1 2 3 4 5 6 7 8 9 10 ...

$ Before : int 81 87 86 82 90 86 96 73 74 75 ...

$ After : int 78 91 78 78 84 67 92 70 58 62 ...

$ Difference: int 3 -4 8 4 6 19 4 3 16 13 ...

> qqmath(~ Difference, xmp09.09)

Standard normal quantiles
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> with(xmp09.09, t.test(Before, After, paired = TRUE))

Paired t-test

data: Before and After

t = 3.2791, df = 15, p-value = 0.005072

alternative hypothesis: true mean difference is not equal to 0

95 percent confidence interval:

2.362371 11.137629

sample estimates:

mean difference

6.75

9.4 Example 9.10

This can be done directly with the di�erences:

> Difference <- c(5,19,25,10,10,10,28,46,25,38,14,23,14)

> qqnorm(Difference)

> qqline(Difference)

> t.test(Difference)

One Sample t-test
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data: Difference

t = 6.1904, df = 12, p-value = 4.654e-05

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

13.30957 27.76736

sample estimates:

mean of x

20.53846

Or, using the data frame with the paired=TRUE argument of t.test.

> with(xmp09.10, t.test(slide, digital, paired=TRUE))

Paired t-test

data: slide and digital

t = 6.1904, df = 12, p-value = 4.654e-05

alternative hypothesis: true mean difference is not equal to 0

95 percent confidence interval:

13.30957 27.76736

sample estimates:

mean difference

20.53846
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Chapter 10

The Analysis of Variance
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Chapter 11

Multifactor Analysis of

Variance

11.1 Example 11.01

An interaction plot shows the response versus the levels of one factor with the
points joined according to the levels of the other factor. It an additive model is
valid, the lines should be approximately parallel.

For a balanced data set, the order of the factors does not a�ect the calcu-
lations of the sums of squares nor any of the test statistics and conclusions.
However, for unbalanced data the order of the factors is important. In general
we put the blocking factor(s) �rst and the treatment factor(s) last.

The TukeyHSD function can be applied to aov models with more than one
factor. If we are only interested in selected factors we can use the argument
which to restrict the factors being considered.

Plots are useful aids in checking if assumptions have been satis�ed. To
assess the constant variance assumption, residual plots are used and the normal
probability plot of the residuals is used to assess the assumption of a normal
distribution of the noise term. The simplest way to obtain such plots in R is
to plot the �tted model object. Use which = 1 to get residuals versus �tted
values, which = 2 to get the qqnorm plot of the residuals, or which = 1:2 to
get both.

Before beginning, we coerce the variables brand and treatment to be factors.

> xmp11.01$brand = as.factor(xmp11.01$brand)

> xmp11.01$treatment = as.factor(xmp11.01$treatment)

> with(xmp11.01, interaction.plot(treatment, brand, strength, col=2:4, lty=1))

> with(xmp11.01, interaction.plot(treatment, brand, strength, col=2:4, lty=1))

> with(xmp11.01, interaction.plot(brand, treatment, strength, col=2:4, lty=1))

> with(xmp11.01, interaction.plot(brand, treatment, strength, col=2:4, lty=1))

> anova(fm1 <- aov(strength ~ treatment + brand, xmp11.01))

65
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Analysis of Variance Table

Response: strength

Df Sum Sq Mean Sq F value Pr(>F)

treatment 3 0.47969 0.159897 11.0549 0.007399

brand 2 0.12822 0.064108 4.4323 0.065765

Residuals 6 0.08678 0.014464

> TukeyHSD(fm1, which = "treatment")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = strength ~ treatment + brand, data = xmp11.01)

$treatment

diff lwr upr p adj

2-1 -0.46666667 -0.8065953 -0.12673802 0.0124339

3-1 -0.38000000 -0.7199286 -0.04007135 0.0315128

4-1 -0.50333333 -0.8432620 -0.16340469 0.0086330

3-2 0.08666667 -0.2532620 0.42659531 0.8141883

4-2 -0.03666667 -0.3765953 0.30326198 0.9806209

4-3 -0.12333333 -0.4632620 0.21659531 0.6185041

> plot(fm1, which = 1:2)

11.2 Example 11.05

> str(xmp11.05)

'data.frame': 20 obs. of 3 variables:

$ power: int 685 722 733 811 828 792 806 802 888 920 ...

$ humid: Ord.factor w/ 4 levels "1"<"2"<"3"<"4": 1 1 1 1 1 2 2 2 2 2 ...

$ brand: Factor w/ 5 levels "1","2","3","4",..: 1 2 3 4 5 1 2 3 4 5 ...

> with(xmp11.05, interaction.plot(humid, brand, power, col = 2:6, lty = 1))

> anova(fm1 <- aov(power ~ humid + brand, data = xmp11.05))

Analysis of Variance Table

Response: power

Df Sum Sq Mean Sq F value Pr(>F)

humid 3 116218 38739 278.199 2.364e-11

brand 4 53231 13308 95.567 5.419e-09

Residuals 12 1671 139

> TukeyHSD(fm1, which = "brand")
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Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = power ~ humid + brand, data = xmp11.05)

$brand

diff lwr upr p adj

2-1 46.00 19.403556 72.59644 0.0010268

3-1 41.50 14.903556 68.09644 0.0024312

4-1 116.50 89.903556 143.09644 0.0000001

5-1 139.75 113.153556 166.34644 0.0000000

3-2 -4.50 -31.096444 22.09644 0.9812528

4-2 70.50 43.903556 97.09644 0.0000175

5-2 93.75 67.153556 120.34644 0.0000008

4-3 75.00 48.403556 101.59644 0.0000092

5-3 98.25 71.653556 124.84644 0.0000005

5-4 23.25 -3.346444 49.84644 0.0978028

> plot(TukeyHSD(fm1, which = "brand"))

> plot(TukeyHSD(fm1, which = "brand"))

11.3 Example 11.06

> str(xmp11.06)

'data.frame': 24 obs. of 3 variables:

$ Resp : num 8 6.9 9.3 9.2 12 9.4 17.3 19.3 18.8 24.9 ...

$ Stimulus: Factor w/ 6 levels "L1","L2","T",..: 1 2 3 4 5 6 1 2 3 4 ...

$ Subject : Factor w/ 4 levels "1","2","3","4": 1 1 1 1 1 1 2 2 2 2 ...

> anova(fm1 <- aov(Resp ~ Subject + Stimulus, data = xmp11.06))

Analysis of Variance Table

Response: Resp

Df Sum Sq Mean Sq F value Pr(>F)

Subject 3 13444.6 4481.5 86.1112 1.11e-09

Stimulus 5 1428.3 285.7 5.4888 0.00455

Residuals 15 780.7 52.0

> with(xmp11.06, interaction.plot(Stimulus, Subject, Resp, col = 2:6, lty = 1))

> TukeyHSD(fm1, which = "Stimulus")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Resp ~ Subject + Stimulus, data = xmp11.06)
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$Stimulus

diff lwr upr p adj

L2-L1 3.050 -13.523502 19.6235 0.9895813

T-L1 4.275 -12.298502 20.8485 0.9553756

L1+L2-L1 15.525 -1.048502 32.0985 0.0727869

L1+T-L1 16.400 -0.173502 32.9735 0.0532377

L2+T-L1 20.225 3.651498 36.7985 0.0129117

T-L2 1.225 -15.348502 17.7985 0.9998651

L1+L2-L2 12.475 -4.098502 29.0485 0.2019526

L1+T-L2 13.350 -3.223502 29.9235 0.1528205

L2+T-L2 17.175 0.601498 33.7485 0.0401628

L1+L2-T 11.250 -5.323502 27.8235 0.2908899

L1+T-T 12.125 -4.448502 28.6985 0.2248769

L2+T-T 15.950 -0.623502 32.5235 0.0625789

L1+T-L1+L2 0.875 -15.698502 17.4485 0.9999744

L2+T-L1+L2 4.700 -11.873502 21.2735 0.9348445

L2+T-L1+T 3.825 -12.748502 20.3985 0.9719095

> plot(fm1,which = 1)

> range(xmp11.06$Resp)

[1] 6.9 96.6

> anova(fm2 <- aov(log(Resp) ~ Subject + Stimulus, data = xmp11.06))

Analysis of Variance Table

Response: log(Resp)

Df Sum Sq Mean Sq F value Pr(>F)

Subject 3 13.1315 4.3772 264.972 3.270e-13

Stimulus 5 1.1089 0.2218 13.425 4.331e-05

Residuals 15 0.2478 0.0165

> with(xmp11.06, interaction.plot(Stimulus, Subject, log(Resp), col = 2:6, lty = 1))

> plot(fm2,which = 1)

> opar <- par(pty = 's')

> plot(fm2,which = 2)

> par(opar)

> plot(TukeyHSD(fm2, which = "Stimulus"))

> with(xmp11.06,interaction.plot(Stimulus, Subject, fitted(fm2), col=2:6, lty=1))

11.4 Example 11.07

> str(xmp11.07)
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'data.frame': 36 obs. of 3 variables:

$ Yield : num 10.5 9.2 7.9 12.8 11.2 13.3 12.1 12.6 14 10.8 ...

$ Variety: Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...

$ Density: Factor w/ 4 levels "1","2","3","4": 1 1 1 2 2 2 3 3 3 4 ...

> xtabs(~ Variety + Density, data = xmp11.07)

Density

Variety 1 2 3 4

1 3 3 3 3

2 3 3 3 3

3 3 3 3 3

> xtabs(Yield ~ Variety + Density, data = xmp11.07)

Density

Variety 1 2 3 4

1 27.6 37.3 38.7 32.4

2 26.8 37.9 43.5 38.3

3 48.9 54.3 59.8 54.5

> xtabs(Yield ~ Variety + Density, xmp11.07)/ xtabs( ~ Variety + Density, xmp11.07)

Density

Variety 1 2 3 4

1 9.200000 12.433333 12.900000 10.800000

2 8.933333 12.633333 14.500000 12.766667

3 16.300000 18.100000 19.933333 18.166667

> anova(fm1 <- aov(Yield ~ Density * Variety, data = xmp11.07))

Analysis of Variance Table

Response: Yield

Df Sum Sq Mean Sq F value Pr(>F)

Density 3 86.69 28.896 18.2306 2.212e-06

Variety 2 327.60 163.799 103.3430 1.608e-12

Density:Variety 6 8.03 1.339 0.8445 0.5484

Residuals 24 38.04 1.585

> with(xmp11.07, interaction.plot(Density, Variety, Yield, col=2:6, lty=1))

> anova(fm2 <- aov(Yield ~ Density + Variety, xmp11.07))

Analysis of Variance Table

Response: Yield

Df Sum Sq Mean Sq F value Pr(>F)

Density 3 86.69 28.896 18.816 4.690e-07

Variety 2 327.60 163.799 106.659 2.313e-14

Residuals 30 46.07 1.536
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> TukeyHSD(fm2)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = Yield ~ Density + Variety, data = xmp11.07)

$Density

diff lwr upr p adj

2-1 2.9111111 1.3226494 4.4995728 0.0001375

3-1 4.3000000 2.7115383 5.8884617 0.0000002

4-1 2.4333333 0.8448716 4.0217951 0.0013148

3-2 1.3888889 -0.1995728 2.9773506 0.1033936

4-2 -0.4777778 -2.0662395 1.1106839 0.8455586

4-3 -1.8666667 -3.4551284 -0.2782049 0.0163721

$Variety

diff lwr upr p adj

2-1 0.875000 -0.3722268 2.122227 0.2109855

3-1 6.791667 5.5444399 8.038893 0.0000000

3-2 5.916667 4.6694399 7.163893 0.0000000

> model.tables(fm2, type = "means")

Tables of means

Grand mean

13.88889

Density

Density

1 2 3 4

11.478 14.389 15.778 13.911

Variety

Variety

1 2 3

11.333 12.208 18.125

11.5 Example 11.10

> str(xmp11.10)

'data.frame': 96 obs. of 4 variables:

$ Tempr : num 3.6 3.8 3.9 3.4 3.7 3.9 2.9 2.8 2.7 2.5 ...

$ Period: int 1 1 1 1 1 1 1 1 1 1 ...
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$ Strain: int 1 1 1 1 1 1 1 1 1 1 ...

$ Coat : int 1 1 1 2 2 2 3 3 3 4 ...

> xtabs(~ Period + Coat + Strain, xmp11.10)

, , Strain = 1

Coat

Period 1 2 3 4

1 3 3 3 3

2 3 3 3 3

3 3 3 3 3

4 3 3 3 3

, , Strain = 2

Coat

Period 1 2 3 4

1 3 3 3 3

2 3 3 3 3

3 3 3 3 3

4 3 3 3 3

> anova(fm1 <- aov(Tempr ~ Period * Coat * Strain, xmp11.10))

Analysis of Variance Table

Response: Tempr

Df Sum Sq Mean Sq F value Pr(>F)

Period 1 0.257 0.257 2.0405 0.15670

Coat 1 42.781 42.781 340.0850 < 2.2e-16

Strain 1 6.458 6.458 51.3409 2.265e-10

Period:Coat 1 0.531 0.531 4.2214 0.04288

Period:Strain 1 0.005 0.005 0.0373 0.84738

Coat:Strain 1 0.006 0.006 0.0479 0.82733

Period:Coat:Strain 1 0.057 0.057 0.4534 0.50248

Residuals 88 11.070 0.126

> anova(fm2 <- update(fm1, . ~ . - Period:Strain - Period:Coat:Strain))

Analysis of Variance Table

Response: Tempr

Df Sum Sq Mean Sq F value Pr(>F)

Period 1 0.257 0.257 2.0753 0.15317

Coat 1 42.781 42.781 345.8856 < 2.2e-16

Strain 1 6.458 6.458 52.2166 1.554e-10
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Period:Coat 1 0.531 0.531 4.2935 0.04112

Coat:Strain 1 0.006 0.006 0.0487 0.82588

Residuals 90 11.132 0.124

11.6 Example 11.11

> str(xmp11.11)

'data.frame': 36 obs. of 4 variables:

$ abrasion: num 7.38 5.39 5.03 5.5 5.01 6.79 7.15 8.16 4.96 5.78 ...

$ row : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 1 1 1 1 1 1 2 2 2 2 ...

$ column : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 1 2 3 4 5 6 1 2 3 4 ...

$ humidity: Factor w/ 6 levels "25 percent","37 percent",..: 3 4 6 2 5 1 2 1 5 4 ...

> xtabs(as.integer(humidity) ~ row + column, xmp11.11)

column

row 1 2 3 4 5 6

1 3 4 6 2 5 1

2 2 1 5 4 3 6

3 4 6 3 5 1 2

4 1 3 2 6 4 5

5 6 5 1 3 2 4

6 5 2 4 1 6 3

> xtabs(abrasion ~ row + column, xmp11.11)

column

row 1 2 3 4 5 6

1 7.38 5.39 5.03 5.50 5.01 6.79

2 7.15 8.16 4.96 5.78 6.24 5.06

3 6.75 5.64 6.34 5.31 7.81 8.05

4 8.05 6.45 6.31 5.46 6.05 5.51

5 5.65 5.44 7.27 6.54 7.03 5.96

6 6.00 6.55 5.93 8.02 5.80 6.61

> anova(fm1 <- aov(abrasion ~ row + column + humidity, xmp11.11))

Analysis of Variance Table

Response: abrasion

Df Sum Sq Mean Sq F value Pr(>F)

row 5 2.1897 0.4379 2.5106 0.06407

column 5 2.5743 0.5149 2.9516 0.03731

humidity 5 23.5301 4.7060 26.9789 3.03e-08

Residuals 20 3.4887 0.1744
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> model.tables(fm1, cterms = "humidity", type = "mean")

Tables of means

Grand mean

6.305

humidity

humidity

25 percent 37 percent 50 percent 62 percent 75 percent 87 percent

7.683 6.765 6.593 5.977 5.372 5.440

> TukeyHSD(fm1, which = "humidity")

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = abrasion ~ row + column + humidity, data = xmp11.11)

$humidity

diff lwr upr p adj

37 percent-25 percent -0.91833333 -1.6762719 -0.16039478 0.0121211

50 percent-25 percent -1.09000000 -1.8479386 -0.33206145 0.0024825

62 percent-25 percent -1.70666667 -2.4646052 -0.94872811 0.0000097

75 percent-25 percent -2.31166667 -3.0696052 -1.55372811 0.0000001

87 percent-25 percent -2.24333333 -3.0012719 -1.48539478 0.0000001

50 percent-37 percent -0.17166667 -0.9296052 0.58627189 0.9782473

62 percent-37 percent -0.78833333 -1.5462719 -0.03039478 0.0385446

75 percent-37 percent -1.39333333 -2.1512719 -0.63539478 0.0001513

87 percent-37 percent -1.32500000 -2.0829386 -0.56706145 0.0002818

62 percent-50 percent -0.61666667 -1.3746052 0.14127189 0.1545364

75 percent-50 percent -1.22166667 -1.9796052 -0.46372811 0.0007299

87 percent-50 percent -1.15333333 -1.9112719 -0.39539478 0.0013767

75 percent-62 percent -0.60500000 -1.3629386 0.15293855 0.1683501

87 percent-62 percent -0.53666667 -1.2946052 0.22127189 0.2697646

87 percent-75 percent 0.06833333 -0.6896052 0.82627189 0.9997113
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Appendix A

Installing R and the Devore7

package

A.1 What is R?

R is a freely available, open source, computer system for statistical analysis
and graphics. It can be downloaded from the main R information site http:

//www.r-project.org, from the Comprehensive R Archive Network (CRAN)
site http://cran.r-project.org, or from any of the mirrors of that site. Those
in the United States, for example, are encouraged to use the U.S. mirror http:
//cran.us.r-project.org.

R provides facilities for data input and manipulation, for graphical and nu-
merical summaries, for simulation and exploration of probability distributions,
and for statistical analysis of data. It can be used for computing support for
essentially all the topics in an introductory statistics course. This document
describes how to use R for computing support in a course that uses the text
Probability and Statistics for Engineering and the Sciences (7th edition) by Jay
Devore (Duxbury, 2008).

Althought there are some limited graphical user interface (GUI) capabilites
for R, it is basically a command-line system. 1 We will concentrate on the
command-line interface, showing what the user types and what R responds.
We will refer to what the user types as a �command� although, technically, we
should use the term �function call�.

A.2 Obtaining and Installing R

Binary versions of R are available for various operating systems including Mi-
crosoft Windows (Windows 95 or later), the Macintosh (OS X), and several

1Some GUI capabilities are provided the add-on packages Rcmdr (http://socserv.
mcmaster.ca/jfox/Misc/Rcmdr/) and pmg (http://www.math.csi.cuny.edu/pmg).
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Linux distributions. Complete source code for R is also available on the archives
but it is quite unlikely that you will need to compile R for use with an intro-
ductory Statistics course.

As most students use R with Windows we will provide more detailed instal-
lation instructions for this operating system.

The current release of R is 2.4.1. For WIndows there is a binary installer
�le for R. It is approximately 30MB in size and can be found at http://cran.
r-project.org/bin/windows/base/. If you have a fast network connection
you should download and execute this �le to install R. Without a network
connection or with a slow network connection you will need to make other
arrangements for obtaining a copy of this �le.

The installation should provide a desktop icon or menu item for R. Use one of
these to start R. The program should display a welcome message and a prompt
"> ". At this point you could use it as a calculator. Try, for example,

> 2+2

[1] 4

A.3 Quitting R

To quit from R you can either select File -> Exit from the menu bar or type

> q()

at the prompt, as indicated in the startup message. It is necessary to type the
parentheses. That is, typing q by itself is not su�cient.

Both of these methods will bring up a con�rmation panel asking if you want
to save the worksheet. In most cases you will not need to save the worksheet.

A.4 Using data sets

A standard R installation provides several data sets that are used to demonstrate
di�erent techniques. The data command provides a list of these

> data()

You can obtain a description of a data set with the help command or with the
short form for help which is ? followed by the name. Try, for example,

> help(pressure)

> ?pressure

A.5 What is Devore7?

Notice that the description of the available data sets groups them into �packages�
such as the �base� package, the �modreg� package, etc. Packages are groups of

http://cran.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/windows/base/
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functions and data sets that extend the capabilities of R for speci�c purposes.
The �Devore7� package provides the data sets for the 7th edition of Devore's
engineering statistics text book. By installing and attaching this package you
will be able to use the data sets from the examples and exercises in this text
book without having to enter the data by hand.

The Devore7 package also provides a �vignette� - a document that describe
particular aspects of the use of R. This document is one the vignette from the
Devore7 package.

A.6 Installing and attaching Devore7

Installing and attaching a package are two di�erent operations. Installation
involves downloading the package from a web site and installing the �les on
the local hard drive. It only needs to be done once. A package that has been
installed can be attached to an R session after which the data sets will be
available in the session.

To install the Devore7 package on a computer with access to the internet,
either use the command

> install.packages('Devore7')

or select Packages -> Install package(s) from CRAN -> Devore7 from the
menu bar.

If you do not have access to the Internet you will need to obtain a copy of
the zip �le whose name begins with Devore7 in the proper sub-directory http:

//cran.r-project.org/bin/windows/contrib/. (The exact name of the �le
changes as the package is updated but it will always begin with Devore7 and
end with .zip.) Use the menu selection Packages -> Install package(s)

from local zip files to install the package from the zip �le.
We emphasize that it is only necessary to do the installation once.
To attach the package to an R session use

> library(Devore7)

after starting R or select Packages -> Load package -> Devore7 from the
menu bar.

You must attach the package every time you start R if you are to have access
to the data sets from the textbook.

A.7 Names of the data sets

Data sets for exercises are named excc.nn where cc is two-digit chapter number
and nn is the two-digit exercise number. Thus the data for exercise 27 in chapter
10 (p. 394) is called ex10.27. To provide the correct order when sorting the
data set names, single-digit chapter or exercise numbers have a zero prepended.
The data for exercise 1 in chapter 6 (p. 240) is called ex06.01.

http://cran.r-project.org/bin/windows/contrib/
http://cran.r-project.org/bin/windows/contrib/
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Data sets for examples in the text are named xmpcc.nn.
A listing of all the data sets in the package can be obtained with

> data(package = 'Devore7')

A.8 Data sets as tables

All the data sets in the Devore7 package are in a tabular form called a data frame
in R. Rows correspond to observations and columns correspond to �variables�.
We use the tabular form even when there is only one variable.

The columns have names, usually re�ecting the description of the data from
the exercise or the example, although names like C1 also occur frequently. (That
name happens to be the default name of the �rst column assigned by another
statistical computing system called Minitab.)

You can check the names and types of data in the data frame with str,
which prints a concise summary of the structure of the data.

> data(xmp01.02)

> str(xmp01.02)

'data.frame': 27 obs. of 1 variable:

$ C1: num 5.9 7.2 7.3 6.3 8.1 6.8 7 7.6 6.8 6.5 ...

This shows that the data for example 1.2 (p. 5) consists of 27 observations of
1 variable called strength, which is a numeric variable. The �rst several data
values are printed so you can check that they correspond to the values in the
text.

Most of the data sets discussed in chapters 1 to 8 are univariate (i.e. only one
variable), numeric data like xmp01.19. There are a few examples of univariate,
categorical data such as the health complaints discussed in exercise 1.29 (p. 24)

> data(ex01.29)

> str(ex01.29)

'data.frame': 61 obs. of 1 variable:

$ C1: Factor w/ 8 levels "B","C","C5","F",..: 3 8 8 7 5 2 4 1 1 4 ...

These data are a set of observations of a variable that can take on only limited
set of values named B for back pain, C for coughing, etc. In R such data are said
to be a factor.

Some summary information about the variables in a data frame can be ob-
tained with the summary function.

> summary(xmp01.02)

C1

Min. : 5.900

1st Qu.: 7.000
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Median : 7.700

Mean : 8.141

3rd Qu.: 8.850

Max. :11.800

> summary(ex01.29)

C1

O :21

J :10

F : 9

B : 7

N : 6

M : 4

(Other): 4

For a numeric variable summary provides a `�ve-number' summary and the mean
(making a total of 6 numbers in all). For a factor summary provides a frequency
table.

A.9 Accessing individual variables

The summary function can be applied to entire data frames or to individual
variables in a data frame. This is unusual. Most graphical or numerical functions
apply to individual variables.

There are two ways to access a variable from within a data frame:

1. Use the name of the data set and the name of the variable separated by $

2. attach the data frame and use the variable name by itself

For example, the two ways to obtain the stem-and-leaf plot of the space
shuttle launch ambient temperature data from example 1.1 are

> data(xmp01.01)

> str(xmp01.01)

'data.frame': 36 obs. of 1 variable:

$ temp: int 84 49 61 40 83 67 45 66 70 69 ...

> stem(xmp01.01$temp)

The decimal point is 1 digit(s) to the right of the |

3 | 1

4 | 059

5 | 23788

6 | 01136777789

7 | 000023556689

8 | 0134
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and

> attach(xmp01.01)

> stem(temp)

The decimal point is 1 digit(s) to the right of the |

3 | 1

4 | 059

5 | 23788

6 | 01136777789

7 | 000023556689

8 | 0134

A.10 Stacked data

When storing multiple variables in an object there are two common choices. For
instance suppose we had two variables

> a = c(1,2,3,4)

> b = c(2,3,5,7)

Then a data frame could have two columns, one for each

> df = data.frame(a,b)

> df

a b

1 1 2

2 2 3

3 3 5

4 4 7

This is a common storage method, but doesn't work well for independent sam-
ples, as they need not have the same number of observations, hence won't �t
well in a rectangular format. As an alternative, the data can be stacked end to
end, with an extra value indicating which variable the data refers to.

> stack(df)

values ind

1 1 a

2 2 a

3 3 a

4 4 a

5 2 b

6 3 b

7 5 b

8 7 b
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This storage method also works well when model formula are used. Stacked
data frames may be unstacked with unstack. For more extensive stacking op-
tions, the reshape add-on package is available from your nearest CRAN site.

A.11 Finding help

R has an extensive amount of online documentation available through the help
function.

Help on a data set Each data set in this package has a corresponding help
page. For example, to view that page for the xmp01.01 data set, one would
enter the command help(xmp01.01). This is more useful for data sets in
other packages, as the ones in Devore7 are created generically. To view
all the data sets in a package, say the Devore7 package, use the package
argument: e.g., data(package="Devore7").

Help on a function name To �nd out more about a function, say the mean,
the command help(mean) may be used. For many functions, the docu-
ment writers have provided examples. The example function will execute
the examples.

Seeing a vignette Many R packages have accompanying vignettes describing
how the package works. This document is an example. Vignettes may be
read from R with the command vignette. For instance, vignette("Devore7").
To list all available vignettes, drop the vignette name: vignette().
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